Statistical Speech Enhancement Based on Probabilistic Integration of Variational Autoencoder and Non-Negative Matrix Factorization

نویسندگان

  • Yoshiaki Bando
  • Masato Mimura
  • Katsutoshi Itoyama
  • Kazuyoshi Yoshii
  • Tatsuya Kawahara
چکیده

This paper presents a statistical method of single-channel speech enhancement that uses a variational autoencoder (VAE) as a prior distribution on clean speech. A standard approach to speech enhancement is to train a deep neural network (DNN) to take noisy speech as input and output clean speech. Although this supervised approach requires a very large amount of pair data for training, it is not robust against unknown environments. Another approach is to use nonnegative matrix factorization (NMF) based on basis spectra trained on clean speech in advance and those adapted to noise on the fly. This semi-supervised approach, however, causes considerable signal distortion in enhanced speech due to the unrealistic assumption that speech spectrograms are linear combinations of the basis spectra. Replacing the poor linear generative model of clean speech in NMF with a VAE—a powerful nonlinear deep generative model— trained on clean speech, we formulate a unified probabilistic generative model of noisy speech. Given noisy speech as observed data, we can sample clean speech from its posterior distribution. The proposed method outperformed the conventional DNN-based method in unseen noisy environments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-order non-negative matrix factorization for speech enhancement

Amongst the speech enhancement techniques, statistical models based on Non-negative Matrix Factorization (NMF) have received great attention. In a single channel configuration, NMF is used to describe the spectral content of both the speech and noise sources. As the number of components can have a crucial influence on separation quality, we here propose to investigate model order selection base...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Single-channel speech enhancement based on non-negative matrix factorization and online noise adaptation

In this paper, we demonstrate a simulator for real-time speech enhancement based on a non-negative matrix factorization (NMF) technique. In particular, we propose an online noise adaptation method in an NMF framework, which is activated during non-speech intervals and used for adapting noise bases for NMF. Thus, incoming noisy speech is decomposed by using such adapted noise bases and universal...

متن کامل

Speech enhancement using convolutive nonnegative matrix factorization with cosparsity regularization

A novel method for speech enhancement based on Convolutive Non-negative Matrix Factorization (CNMF) is presented in this paper. The sparsity of activation matrix for speech components has already been utilized in NMF-based enhancement methods. However such methods do not usually take into account prior knowledge about occurrence relations between different speech components. By introducing the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.11439  شماره 

صفحات  -

تاریخ انتشار 2017